Managing Adjacency in Triangular Meshes

نویسنده

  • Charles Loop
چکیده

The problem of efficiently accessing and maintaining adjacency information for triangulations over general surface domains is addressed. Rapid access to adjacent vertices, edges, and triangles is an important aspect of multiresolution techniques, from subdivision surfaces to mesh simplification. Novel data structures and algorithms for the construction, manipulation, and traversal of triangulations suitable for a dynamic multiresolution framework are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A B-rep Data Structure for Polygonal Meshes

This paper introduces a new b-rep (boundary representation) data structure, called AIF (Adjacency and Incidence Framework). It is concise and enables fast access to topological information. Its conciseness results from the fact that it is an orientable, but not an oriented, data structure, i.e. an orientation can be topologically induced as necessary in many applications. It is an optimal 9 4 C...

متن کامل

A Topological Framework for Interactive Queries on 3D Models in the Web

Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency ...

متن کامل

Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique

Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...

متن کامل

Cell-vertex discretization of shallow water equations on mixed unstructured meshes

Finite-volume discretizations can be formulated on unstructured meshes composed of different polygons. A staggered cell-vertex finite-volume discretization of shallow water equations is analyzed on mixed meshes composed of triangles and quads. Although triangular meshes are most flexible geometrically, quads are more efficient numerically and do not support spurious inertial modes of triangular...

متن کامل

Constrained quadrilateral meshes of bounded size

We introduce a new algorithm to convert triangular meshes of polygonal regions, with or without holes, into strictly convex quadrilateral meshes of small bounded size. Our algorithm includes all vertices of the triangular mesh in the quadrilateral mesh, but may add extra vertices (called Steiner points). We show that if the input triangular mesh has t triangles, our algorithm produces a mesh wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000